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Fig. 1. We introduce the Power Particle-In-Cell method as a new weighting scheme that improves hybrid fluid simulations with evenly spaced particles
and volume preservation. The top row shows frames of two liquid jets colliding generated by Power FLIP, our extension of the Fluid Implicit Particle (FLIP)
method. In this example, we also render the liquid surfaces using the isocontour constructed directly from our fluid occupancy map. The bottom row displays
the particle view of our simulation associated with the top-middle frame using pseudo-colors to indicate the particle velocity magnitude, followed by the
visualization of our novel particle-based density kernels that define a regularized representation of Power Particles.

This paper introduces a new weighting scheme for particle-grid transfers
that generates hybrid Lagrangian/Eulerian fluid simulations with uniform
particle distributions and precise volume control. At its core, our approach
reformulates the construction of Power Particles [de Goes et al. 2015] by
computing volume-constrained density kernels. We employ these optimized
kernels as particle domains within the Generalized Interpolation Material
Pointmethod (GIMP) in order to incorporate Power Particles into the Particle-
In-Cell framework, hence the name the Power Particle-In-Cell method. We
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address the construction of volume-constrained density kernels as a regular-
ized optimal transportation problem and describe an iterative solver based
on localized Gaussian convolutions that leads to a significant performance
speedup compared to [de Goes et al. 2015]. We also present novel extensions
for handling free surfaces and solid obstacles that bypass the need for cell
clipping and ghost particles. We demonstrate the advantages of our transfer
weights by improving hybrid schemes for fluid simulation such as the Fluid
Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method
with volume preservation and robustness to varying particle-per-cell ratio,
while retaining low numerical dissipation, conserving linear and angular
momenta, and avoiding particle reseeding or post-process relaxations.
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1 INTRODUCTION
Numerical methods for fluid simulation continue to be extensively
investigated both in computer graphics and scientific computing in
order to reproduce the visually rich and intricate dynamics of liquids
and smoke. Fluid simulation techniques are generally categorized
into Eulerian grid-based and Lagrangian particle-based frameworks
[Bridson 2015]. Eulerian approaches are advantageous in discretiz-
ing forces but present challenges to compute fluid advection due to
numerical dissipation. Conversely, Lagrangian schemes like Smooth
Particle Hydrodynamics (SPH) are well-suited for particle advec-
tion, but their force computations are often inaccurate aggregating
particle attributes through predefined kernels.
To mitigate these opposing issues, hybrid Lagrangian/Eulerian

approaches for fluid simulation have received much attention, espe-
cially in the visual effects industry, by combining the advection of
Lagrangian particles with the force computation produced on Euler-
ian grids. In these hybrid schemes, transferring physical attributes
between particle and grid representations becomes indispensable.
The original Particle-In-Cell (PIC) method [Harlow 1962] suffers
from severe numerical damping caused by excessive averaging of
quantities between the particles and the grid. Later techniques such
as the Fluid Implicit Particle (FLIP) method reduce the artificial dis-
sipation by only interpolating the velocity increment from the grid
to the particles [Brackbill and Ruppel 1986; Zhu and Bridson 2005].
More recent approaches have further improved energy and momen-
tum preservation by transferring higher-order velocity components
[Fu et al. 2017; Jiang et al. 2015]. In addition to fluid dynamics,
particle-grid transfers also play a central role in the Material Point
Method (MPM) [Jiang et al. 2016; Sulsky et al. 1995] used to simulate
elastoplastic [Stomakhin et al. 2014] and viscoplastic phenomena
[Yue et al. 2015] as well as granular [Klár et al. 2016; Stomakhin
et al. 2013] and codimensional materials [Jiang et al. 2017a].
Despite the popularity of hybrid methods and transfer schemes,

controlling the particle distribution and enforcing incompressible
flows remain challenging. The archetypal advection-projection split-
ting between Lagrangian particles and Eulerian grids accumulates
noticeable volume change over time that yields particle clumping
and artificial voids, thus degrading the simulation accuracy and
stability. To alleviate these visual artifacts, existing implementations
resort to post-process corrective steps that either push particles
apart using spring-like forces [Ando et al. 2012] or adjust the volume
error through additional pressure solves [Kugelstadt et al. 2019].
In this work, we derive new weights for particle-grid transfers

that improve hybrid fluid simulations with evenly spaced particles
and volume preservation. Instead of correcting particles as an af-
terthought, we propose to compute transfer weights that account
for the particle occupancy relative to the grid discretization. With
these optimized weights, we are able to enforce incompressibility
geometrically and resolve particle distributions together with the
advection-projection steps. To this end, we consider Lagrangian par-
ticles as fluid parcels with prescribed volumes, whereas the contin-
uum space is discretized as an Eulerian grid with each cell assigned
to a maximum volume capacity. We then address the particle-grid

transfer as a transportation problem that reallocates volume be-
tween the particle and grid representations while conserving the
amount of volume on both the particles and the grid cells.

Our approach draws inspiration from the Power Particles method
introduced by de Goes et al. [2015], which describes particles as
volume-constrained power diagrams that partition the space into
well-shaped cells. The Power Particles representation provides the
optimal transportation plan we seek for mapping volume from par-
ticles to the continuum [Aurenhammer et al. 1998]. Unfortunately,
generating volume-constrained power diagrams is computationally
expensive requiring repetitive cell clipping and scaling poorly with
respect to the simulation resolution. In order to avoid the explicit
construction of power diagrams, we adopt a regularization strategy
for optimal transportation [Peyré et al. 2019] and then reformulate
Power Particles as volume-constrained density kernels that encode
the characteristic function for the domain spanned by each parti-
cle. In particular, we present a novel extension of this regularized
transportation problem that handles free surfaces and solid obsta-
cles free of any meshing or ghost particle seeding. As a result, we
obtain a softened version of Power Particles that is more scalable
and efficient to generate compared to [de Goes et al. 2015].
Equipped with these volume-constrained kernels, we introduce

the Power Particle-In-Cell method as a modification of the Particle-In-
Cell framework that incorporates the Power Particles properties. We
augment particle-grid transfer schemes by computing weights as the
correlation between the particle-based density kernels and the grid-
based interpolation functions based on the Generalized Interpolation
Material Point method [Bardenhagen and Kober 2004; Gao et al.
2017]. The resulting weights can then be retrofitted into existing
hybrid fluid solvers (e.g., FLIP and APIC) seamlessly, producing
faithful particle distributions with volume control and supporting
varying particle-per-cell ratios. We showcase the benefits of our
Power Particle-In-Cell method through various simulation scenarios
including closed containers, free surfaces, and moving obstacles.

In summary, the technical contributions of our work are:

• A reformulation of Power Particles that replaces the costly
construction of power diagrams with a regularized represen-
tation using volume-constrained density kernels (§4).

• Novel weights for particle-grid transfer that combine the
Power Particles properties with the Particle-In-Cell frame-
work, improving FLIP and APIC solvers with uniform particle
distributions and volume preservation (§5).

• An extended transportation objective for optimizing particle
kernels that deals with free surface and solid obstacles while
avoiding cell clipping and ghost particles (§6).

• Acceleration strategies to compute our new transfer weights
efficiently, scaling our method to large fluid simulations (§7).

2 RELATED WORK
Before detailing our contributions, we review prior work on com-
putational methods for fluid simulation restricting our discussion
to hybrid schemes and particle-based strategies. We also describe
recent numerical tools for optimal transportation which serve as
the bases for our formulation. We refer the reader to [Bridson 2015;
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Hu et al. 2019] for an extended overview of fluid solvers used in
computational physics and computer graphics.

Hybrid Lagrangian/Eulerian Methods. The family of Particle-In-
Cell (PIC) methods [Foster and Metaxas 1996; Harlow 1962] hy-
bridizes the discretization of continuum materials by combining
Lagrangian particle and Eulerian grid representations. However,
the traditional PIC-style transfer between these two discretizations
is highly dissipative and unsuited for turbulent and long-run sim-
ulations. The Fluid Implicit Particle (FLIP) method [Brackbill and
Ruppel 1986; Zhu and Bridson 2005] was developed to circumvent
this dissipation, with various extensions proposed for animating
fluids [Ando et al. 2013; Batty et al. 2007; Ferstl et al. 2016; Sato et al.
2018]. Since FLIP introduces noisy velocity fields, a common practice
is to blend the FLIP transfer with some amount of the PIC transfer
to retrieve numerical stability [Zhu and Bridson 2005]. The Affine
Particle-In-Cell (APIC) method was later devised in [Jiang et al.
2015] to improve angular momentum preservation in a PIC-style
scheme by augmenting particles with affine velocity terms. Sub-
sequently, the Polynomial Particle-In-Cell method [Fu et al. 2017]
utilizes higher-order velocity modes. The Moving Least Squares Ma-
terial Point Method (MLS-MPM) [Hu et al. 2018] further formalizes
these additional velocity components into a weighted least squares
optimization. Alternatively, the Generalized Interpolation Material
Point method (GIMP) [Bardenhagen and Kober 2004; Gao et al. 2017]
presents a different perspective of defining particle-grid transfers
by modeling the transfer weights as the convolution between an
interpolation function and a particle domain characteristic func-
tion. More recently, the work of Nakanishi et al. [2020] employs
radial basis functions to provide spatially adaptive weights, while
the approach of Fei et al. [2021] reduces numerical dissipation by
modifying particle updates. In common, existing transfer schemes
are only accurate under the assumption of a nearly uniform particle
distribution, making simulations with uneven particles suffer from
clumps and voids. In sharp contrast, we introduce new transfer
weights that provide precise control over the particle volumes and
spacing, thus improving the simulation accuracy and stability.

SPHMethods. Smoothed Particle Hydrodynamics (SPH) is a preva-
lent approach for Lagrangian simulations of both compressible and
incompressible fluids [Ihmsen et al. 2014; Koschier et al. 2020; Mon-
aghan 2005]. The state equation is often applied to resolve weakly
compressible SPH with small timesteps [Becker and Teschner 2007].
The PCISPH method [Solenthaler and Pajarola 2009] alleviates
this timestep restriction by correcting the density constraint in a
predictive-corrective fashion. Similarly, the method of Macklin and
Müller [2013] approximates incompressibility constraints iteratively
using the Position-based Dynamics framework. Other approaches
[Bender and Koschier 2016; Ihmsen et al. 2013] have further im-
proved the overall quality of SPH simulations by alternating pres-
sure solves that impose density and divergence constraints. The
work of Reinhardt et al. [2019] attempts to restore the particle den-
sity by resizing SPH kernels based on iterative Shepard corrections.
Some SPH implementations have also been combined with grid-
based fluid simulators [Cornelis et al. 2014; Losasso et al. 2008].
While existing SPH schemes rely heavily on predefined kernels,

Fig. 2. These images snapshot the simulation of a fountain using four
variants of a FLIP solver. The original FLIP method suffers from volume
changes and uneven particle distributions leading to noisy surfaces (left).
The method of Ando et al. [2012] relaxes particles more uniformly at the
cost of artificial volume gain (left-middle). The work of Kugelstadt et al.
[2019] preserves the liquid volume, but the reconstructed free surface is
still bumpy (middle-right). In contrast, our Power FLIP scheme maintains
well-distributed particles and produces smooth surfaces contoured directly
from our fluid occupancy estimate (right). Particle velocities are colored
using a blue to white ramp.

we propose to optimize density kernels per timestep in order to
preserve the volume associated with every Lagrangian particle.

Position Correction Methods. Hybrid solvers exploit particles as
indicators of the fluid occupancy over time. Therefore, accumu-
lating uneven particle distributions leads to unbearable volume
changes that cannot be corrected by the pressure forces. For in-
stance, the work of [Ando et al. 2012] proposes weak spring forces
to favor uniform particle distances. Similarly, the method of Taka-
hashi and Lin [2019] accounts for changes in particle density using
SPH kernels. Grid-based approaches such as [Um et al. 2014] cal-
culate sub-grid corrective forces on particles. In [Kugelstadt et al.
2019], estimates of the fluid density on the Eulerian grid are used to
compute extra pressure forces and then displace particles. Instead
of post-processing particle volumes and/or positions, our approach
modifies the transfer weights directly so that advected particles
preserve volume within a uniform distribution.

Power Particles. Departing from previous point-based techniques,
the Power Particles method [de Goes et al. 2015] represents La-
grangian particles as moving power diagrams that partition the
simulation domain with precise volume control, thus producing
fluid simulations with well-distributed particles, accurate pressure
forces, and reduced energy dissipation. The work of Mérigot and
Mirebeau [2016] showed that the Power Particles formulation is
closely related to the discretization of volume-preserving maps
defining the dynamics of incompressible and inviscid fluids. A GPU-
based implementation was later developed by Zhai et al. [2018] for
better computational performance. More recently, Lévy [2022] pro-
posed a modification of Power Particles that handles free surfaces
by clipping power diagrams against spheres instead of using ghost
particles. Despite the high-quality particle distributions, generat-
ing Power Particles is costly due to the repetitive construction of
power diagrams and scales poorly in 3D as the number of particles
increases. To overcome these limitations, we present a regularized
formulation of Power Particles that is significantly faster to com-
pute and compatible with Particle-In-Cell methods. As a result, we
obtain fluid simulations that retain the even particle distributions

ACM Trans. Graph., Vol. 41, No. 4, Article 118. Publication date: July 2022.



118:4 • Quet al.

Fig. 3. This example demonstrates that our method is capable of restor-
ing the fluid volume entirely even when particles are initially compressed
into a single cell. Notice that our method also produces uniform particle
distributions in addition to volume preservation.

and volume preservation of Power Particles, while leveraging the
versatility and efficiency of hybrid Lagrangian/Eulerian methods.

Optimal Transportation. Our work builds upon recent advances
in numerical methods for optimal transportation [Peyré et al. 2019].
In particular, our approach adopts the entropic regularization pre-
sented by Cuturi [2013] that accelerates the construction of optimal
transportation plans using localized Gaussian convolutions. The
regularization of the unbalanced transportation problem using non-
normalized marginals was also described by Chizat et al. [2018]. In
graphics, this regularized formulation has been employed to solve
transportation optimizations over geometric domains [Solomon
et al. 2015] and to generate surface correspondences [Mandad et al.
2017; Solomon et al. 2016]. We exploit these transportation tools to
revisit the construction of Power Particles as softened power dia-
grams encoded by density kernels, similar to the relaxation of the
semi-discrete optimal transportation problem discussed by Cuturi
and Peyré [2018]. In addition, we propose an extended transporta-
tion optimization that incorporates free surfaces and solid obstacles
into particle-based density kernels.

3 DEFINITIONS & NOTATIONS
In this work, we consider a simulation domain Ω with volume |Ω |
and boundary �Ω. Our formulation involves three distinct discretiza-
tions of Ω. We first define Lagrangian particles scattered over Ω
represented by a list of �� points. For the Eulerian computations, we
discretize Ω using a uniform grid of �� cells which we refer to as the
simulation grid (a.k.a., s-grid). In addition, we introduce an auxiliary
transportation grid (a.k.a., t-grid) formed by uniform � � cells used to
construct our density kernels through the regularized optimal trans-
portation solve. Hereafter, we make use of subscripts to differentiate
quantities assigned to these different discretizations. We reserve the
subscripts � for s-grid cells, � for t-grid cells, and � for particles. For
instance, we associate each particle � with the position x� and a pre-
scribed volume �� , while we indicate the center of each simulation
cell � by the point x� and employ the scalar �� = |Ω |/�� to denote its
volume capacity. Similarly, each transportation cell � is located at x�

with volume capacity �� = |Ω |/� � . We indicate the velocity at each
particle � and s-grid cell � by the vectors u� and u� , respectively.
We also denote�� (�)=exp(�/�) as a shorthand for the exponential
function with parameter � >0 and express the Gaussian kernel with
squared standard deviation � as �� � =�� (−‖x� − x� ‖2). Finally, we
define the relative entropy function as R(�,�)=� log(�/�) − � and
the (negated) entropy function as H(�) =R(�, 1), where � and �
are non-negative scalars [Cover and Thomas 2006].

4 REFORMULATING POWER PARTICLES
This section presents the concepts on which our formulation is
based. We start by reviewing numerical methods for optimal trans-
portation that generate a mapping between particles and grid cells
with precise volume control. We also point the reader to [Peyré et al.
2019] for a detailed introduction to computational optimal trans-
portation. Built upon these techniques, we derive volume-preserving
kernel functions that define a partition of unity over the simulation
domain. At last, we relate these particle-based density kernels to
the construction of Power Particles [de Goes et al. 2015].

Optimal Transportation: In order to map particles to grid cells, we
construct a transportation plan encoded by a matrix of size �� × � �
that indicates the (non-negative) amount of volume�� � carried from
�� at x� and coalesced into �� at x� . We start with the assumption
that the fluid occupies the entire domain, i.e.,

∑
� �� =

∑
� �� , and

discuss the case with free surfaces and solid obstacles later in §6. We
define the optimal transportation plan as the matrix that minimizes
the distance traveled to move volume between particles and grid
cells constrained by the volume capacities, which can be written as

min
{�� � }

∑
�,� �� � ‖x� − x� ‖2

s.t.

{ ∑
� �� � = �� ∀�,

∑
� �� � = �� ∀�.

(1a)

(1b)

Several linear program solvers and combinatorial schemes have been
devised for this optimization problem [Burkard et al. 2009], including
specialized methods targeting graphics applications [Balzer et al.
2009; Bonneel et al. 2011]. Unfortunately, these strategies are known
to scale poorly relative to the domain size due to the coupled particle-
cell unknowns, thus making the generation of transportation plans
prohibitive for large particle count and high resolution grids.

Entropic Regularization: To overcome these costly computations,
the work of Cuturi [2013] altered Eq. (1a) with a regularization term
that favors spread out solutions by penalizing the entropy of the
transportation values weighted by a regularization amount �, i.e.:

min
{�� � }

∑
�,� �� � ‖x� − x� ‖2 + �

∑
�,� H(�� � )

s.t.

{ ∑
� �� � = �� ∀�,

∑
� �� � = �� ∀�.

(2a)

(2b)

Remarkably, this modification makes the objective function strictly
convex and Eq. (2) has a unique minimizer concisely expressed as

�� � = �� (� � + �� − ‖x� − x� ‖2) = � ����� � , (3)
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Algorithm 1 Pseudocode for the Sinkhorn algorithm.
1: Initialize 𝑠 𝑗 , 𝑠𝑝 =1 ∀𝑗, 𝑝 .
2: Precompute Gaussian Kernels {𝐾𝑝 𝑗 }.
3: while max𝑗 | (

∑
𝑝 𝑇𝑝 𝑗 )/𝑉𝑗 − 1| > 𝛿 do

4: for 𝑗 = 1 . . . 𝑛 𝑗 do // in parallel
5: 𝑠 𝑗 = 𝑉𝑗/(

∑
𝑝 𝐾𝑝 𝑗𝑠𝑝 )

6: end for
7: for 𝑝 = 1 . . . 𝑛𝑝 do // in parallel
8: 𝑠𝑝 = 𝑉𝑝/(

∑
𝑗 𝐾𝑝 𝑗𝑠 𝑗 )

9: end for
10: end while

where {𝑟 } are the Lagrange multipliers associated with the volume
constraints in Eq. (2b) and 𝑠 =𝜓Y (𝑟 ) indicates the scaling amount
corresponding to each multiplier 𝑟 . Therefore, we can recast the
transportation problem as an optimization that seeks a scaling per
particle and grid cell instead of coupled variables, reducing the
number of unknowns from 𝑛𝑝𝑛 𝑗 to 𝑛𝑝 +𝑛 𝑗 . Note that the resulting
volume amounts {𝑇𝑝 𝑗 } are made of scaled Gaussian values {𝐾𝑝 𝑗 },
which allow the evaluation of the volume constraints as truncated
sums within a window of size proportional to Y.

Sinkhorn Iterations: We optimize these scaling unknowns using
the iterative method of [Sinkhorn 1967] summarized in Algorithm 1
that alternates the update of each variable by enforcing its respective
volume constraint. Observe that the particles have their volumes
restored by the end of every iteration, while the volume constraints
over the grid cells dictate the termination criterion up to a numerical
tolerance 𝛿 set to 0.1 in our experiments. We also note that the
denominators in both scaling updates (lines 5 and 8) correspond
to Gaussian convolutions, which can be efficiently implemented as
matrix-vector multiplications. In addition to scaling linearly in the
number of particles and grid cells, this optimization is a first-order
method and thus converges at a linear rate [Knight 2008].

The Power Kernel: Equipped with the optimal transportation plan,
we can now construct a density kernel 𝜒Y𝑝 : Ω→[0, 1] that defines a
weighting function for each particle 𝑝 via

𝜒Y𝑝 (x) =
𝜓Y (𝑟𝑝 − ∥x𝑝 − x∥2)∑
𝑞 𝜓

Y (𝑟𝑞 − ∥x𝑞 − x∥2)
. (4)

Since this kernel resembles a normalized radial basis function but
using power distances [Aurenhammer 1987], we name it the power
kernel. Notice that the kernel evaluated at any grid cell 𝑗 is equivalent
to 𝜒Y𝑝 (x𝑗 )=𝑇𝑝 𝑗/

∑
𝑞 𝑇𝑞𝑗 =𝑇𝑝 𝑗/𝑉𝑗 . These kernels also form a partition

of unity, i.e.,
∑
𝑝 𝜒

Y
𝑝 (x)=1 for any x∈Ω. Importantly, the integration

of each kernel reproduces the volume of its respective particle:∫
Ω
𝜒Y𝑝 (x) 𝑑x ≈ ∑

𝑗 𝜒
Y
𝑝 (x𝑗 )𝑉𝑗 =

∑
𝑗 𝑇𝑝 𝑗 = 𝑉𝑝 , (5)

where we use the t-grid cells as quadrature points. Additionally, we
can compute the centroid c𝑝 associated with each density kernel as

c𝑝 =
1
𝑉𝑝

∫
Ω
𝜒Y𝑝 (x) x 𝑑x ≈ 1

𝑉𝑝

∑
𝑗 𝑇𝑝 𝑗x𝑗 . (6)

It is worth noting that the centroid c𝑝 always lies inside the span of
its power kernel 𝜒Y𝑝 , but the particle position x𝑝 may fall outside.

Power Diagrams: As discussed by Cuturi and Peyré [2018], Eq.
(4) corresponds to a softmin function between power distances that
returns the probability of the query point x to be assigned to particle
𝑝 . In particular, as the entropic regularization diminishes towards
zero, the power kernel of particle 𝑝 reduces to

lim
Y→0

𝜒Y𝑝 (x)=
{
1, ∥x𝑝 − x∥2 − 𝑟𝑝 ≤ ∥x𝑞 − x∥2 − 𝑟𝑞 ∀𝑞 ≠ 𝑝,

0, otherwise,
(7)

which is equivalent to the definition of power diagrams with weight-
ed points {(x𝑝 , 𝑟𝑝 )} [Aurenhammer 1987]. Therefore, we can use
power kernels as indicator functions representing softened power
cells. Figure 4 illustrates the blurred diagrams generated by power
kernels with different regularization amounts. Moreover, we can in-
terpret Algorithm 1 as a regularized alternative to the semi-discrete
transportation problem [Aurenhammer et al. 1998] that replaces
cell clipping with localized convolutions.

Power Particles: Based on these observations, we can revisit the
formulation of Power Particles [de Goes et al. 2015], which is a
Lagrangian method for fluid simulation described by a time series
of moving power diagrams. Using power kernels, we can approach
Power Particles as a variant of the SPH method [Monaghan 2005]
that optimizes the density kernels at every timestep in order to en-
sure volume preservation and evenly spaced particles. The discrete
operators in [de Goes et al. 2015, Section 2.3] can also be repro-
duced by computing the spatial derivatives of Eq. (5), thus providing
accurate pressure forces. In addition to improving the Lagrangian
discretization, we can further exploit the construction of power ker-
nels to adapt the Power Particles representation into Particle-In-Cell
methods, as we discuss next.

5 POWER PARTICLE-IN-CELL
We now present our novel transfer weights that combine the density
kernels encoding Power Particles into the Particle-In-Cell frame-
work. Additionally, we describe how to integrate these new transfer
weights into PIC/FLIP/APIC fluid solvers. Other hybrid schemes
such as PolyPIC [Fu et al. 2017] and ASFLIP [Fei et al. 2021] can
also be extended in a similar way. Algorithm 2 summarizes the
pseudocode for our modified fluid simulator.

Fig. 4. Our new particle representation based on optimized density kernels
converges to volume-constrained power diagrams as the regularization
amount Y decreases. We visualize the density kernels over a grid by blending
particle colors weighted by the transportation contribution between each
particle and grid cell. Notice how the particle domains overlap and the
colors get more blurry as Y increases.
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Algorithm 2 Pseudocode for a single timestep of our method.
1: Compute transportation plan {𝑇𝑝 𝑗 } via Algorithm 1.
2: Compute power weights {𝑤𝑝𝑖 } via Eq. (9).
3: Particle-to-grid mass transfer via Eq. (11).
4: Particle-to-grid velocity transfer:

a: Power PIC via Eq. (12) or
b: Power FLIP via Eq. (12) or
c: Power APIC via Eq. (13).

5: Apply external forces onto grid velocity.
6: Compute grid-based pressure projection.
7: Grid-to-particle velocity transfer:

a: Power PIC via Eq. (14) or
b: Power FLIP via Eq. (16) or
c: Power APIC via Eqs. (14) and (15).

8: Advect particles via Eq. (17).

Simulation vs. Transportation Grid: In our formulation, we con-
sider the simulation grid (s-grid) used by the Eulerian computations
to be decoupled from the transportation grid (t-grid). By adopting
these two grid representations, our transfer weights can account for
arbitrary layouts of the s-grid. For instance, we can utilize a s-grid
resolution coarser than the t-grid, thus balancing computational cost
and visual quality. We can also adapt the s-grid to various Eulerian
discretizations such as collocated and staggered methods. Choosing
a s-grid layout, we assign every cell 𝑖 an interpolation basis function
𝑁𝑖 (x) so that, for every point x ∈ Ω, we have

𝑁𝑖 (x) ≥ 0,∑
𝑖 𝑁𝑖 (x) = 1,∑

𝑖 𝑁𝑖 (x)x𝑖 = x.
(8)

In our experiments, we set these grid-based functions to piecewise
linear interpolants.We alsomake use of𝑁𝑖 𝑗 ≡ 𝑁𝑖 (x𝑗 ) as a shorthand
to indicate the evaluation of 𝑁𝑖 at each t-grid point x𝑗 .

The Power Weights: We construct our weighting scheme based
on the GIMP method [Bardenhagen and Kober 2004; Gao et al.
2017], which defines weights by computing the correlation between
particle-based characteristic functions and grid-based interpolants:

𝑤𝑝𝑖 =
1
𝑉𝑝

∫
Ω
𝜒Y𝑝 (x)𝑁𝑖 (x) 𝑑x ≈ 1

𝑉𝑝

∑
𝑗 𝑇𝑝 𝑗𝑁𝑖 𝑗 . (9)

Since the resulting weights are derived from power kernels, we refer
to them as power weights. Note that we use t-grid cells as a cubature
approximation of Eq. (9), which can be efficiently evaluated by a
truncated sum that involves only a bounded window of cells around
each s-grid element thanks to the localized support of both particle
and grid kernels. These power weights also inherit the high-order
continuity of the scaled Gaussian functions defining the power
kernels. Importantly, we exploit the volume constraints imposed by
the particle-based density kernels to further show that:

𝑤𝑝𝑖 ≥ 0,∑
𝑖 𝑤𝑝𝑖 = 1,∑

𝑖 𝑤𝑝𝑖x𝑖 = c𝑝 .
(10)

Therefore, the power weights form a partition of unity but are
not interpolants, returning instead the centroid c𝑝 of the domain
covered by each particle kernel.

Mass Transfer: As typical in hybrid solvers, we associate every La-
grangian particle 𝑝 with a time-independent mass attribute𝑚𝑝 . We
define this particle mass as𝑚𝑝 =𝜌𝑉𝑝 that multiplies the prescribed
particle volume 𝑉𝑝 by the constant fluid density 𝜌 . The amount of
mass in each s-grid cell 𝑖 is then expressed as:

𝑚𝑖 =
∑
𝑝 𝑤𝑝𝑖𝑚𝑝 . (11)

Particle-to-Grid Transfer: The power weights can be easily inte-
grated into the transfer of velocity fields from particles to s-grid
cells at any given simulation timestep. The simplistic transfer used
in PIC and FLIP methods [Brackbill and Ruppel 1986; Harlow 1962;
Zhu and Bridson 2005] is written in terms of power weights as

𝑚𝑖u𝑖 =
∑
𝑝 𝑤𝑝𝑖𝑚𝑝u𝑝 . (12)

We can also adapt the particle-to-grid transfer from theAPICmethod
[Jiang et al. 2015] to use power weights, leading to

𝑚𝑖u𝑖 =
∑
𝑝 𝑤𝑝𝑖𝑚𝑝

(
u𝑝 + A𝑝 (x𝑖 − c𝑝 )

)
, (13)

with the matrix A𝑝 indicating the linear component of the parti-
cle velocity, which we update in the subsequent grid-to-particle
transfer step. Note that Eq. (13) employs c𝑝 instead of x𝑝 , which is
necessary to ensure linear and angular momenta conservation for
our Power APIC transfer. These properties can be verified following
a derivation similar to [Jiang et al. 2017b] that makes use of Eq. (10).

Eulerian Update: Given the fluid mass and velocity transferred
from particles to the s-grid, we can proceed with the Eulerian sim-
ulation by adding any external forces and computing the pressure
projection that makes the grid velocity divergence-free. We indicate
the velocity at each s-grid cell 𝑖 updated by the Eulerian steps as ũ𝑖 .

Grid-to-Particle Transfer: To map the updated grid velocity back
to particles, we modify the PIC-style transfer with power weights:

u𝑝 =
∑
𝑖 𝑤𝑝𝑖 ũ𝑖 . (14)

In the case of the APIC method, we additionally update the particle
matrix A𝑝 =B𝑝 (D𝑝 )−1 with the matrices B𝑝 and D𝑝 defined by{

D𝑝 =
∑
𝑖 𝑤𝑝𝑖 (x𝑖 − c𝑝 ) (x𝑖 − c𝑝 )𝑡 ,

B𝑝 =
∑
𝑖 𝑤𝑝𝑖 ũ𝑖 (x𝑖 − c𝑝 )𝑡 .

(15)

Once again, observe that our power version of the APICmethod uses
particle centroids c𝑝 instead of particle positions x𝑝 . Alternatively,
we can devise a FLIP-style transfer that only interpolates the grid
velocity increments, leading to

u𝑘+1𝑝 = u𝑘𝑝 +∑
𝑖 𝑤

𝑘
𝑝𝑖

(
ũ𝑘
𝑖
− u𝑘

𝑖

)
, (16)

where we use superscripts to differentiate the simulation timesteps.

Particle Advection: Finally, we approach the particle advection
by deforming the domain covered by each particle based on the
updated grid velocity. The particle advection can thus be computed
with our power weights through

x𝑝 =
∑
𝑖 𝑤𝑝𝑖 (x𝑖 + Δ𝑡 ũ𝑖 ) = c𝑝 + Δ𝑡 u𝑝 , (17)
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Fig. 5. We visualize the fluid occupancy generated by our transportation
optimization with free surfaces for varying sharpness values �. The fluid
occupancy is shown by a color ramp from blue to red. In the case of no
baseline (left), we obtain non-uniform grid volumes inside the fluid with
a smeared fluid-air interface. By increasing �, the transition near the free
surface sharpens and the fluid interior becomes nearly constant.

whereΔ� indicates the time increment between consecutive timesteps.
As a result, our particle advection favors the formation of evenly
spaced distributions similar to [de Goes et al. 2015].

6 FREE SURFACES AND SOLID OBSTACLES
So far we have described how to construct the Power Particle-In-
Cell method based on the assumption that the fluid occupies the
entire domain. We present next extensions to our formulation that
enable fluid simulations with free surfaces and solid obstacles.

Slack Air Variables: To represent free surfaces, we introduce an
extra variable, denoted by � � , that measures the volume of air con-
tained in each cell � of the t-grid. These air volumes can be inter-
preted as slack variables necessary to complement the fluid volume
gathered from the Lagrangian particles by the transportation plan
{�� � } in order to fulfill the volume capacity within the grid cells. Us-
ing these air variables, we can revisit Eq. (2b) and expand the volume
constraint of each grid cell as �� =

∑
� �� � +� � . We can also verify

that
∑
� �� =

∑
�,� �� � =

∑
� (�� −� � ) ≤

∑
� �� = |Ω |, thus confirming

that the fluid occupies no more than the domain volume.

Air Volume Baseline: Free surfaces are often estimated as the zero
levelset of a signed distance function approximated based on the
distribution of the Lagrangian particles [Bridson 2015]. The usual
convention is to define the signed distance function  : Ω→R so
that  (x) < 0 for every point x inside the fluid. Although particle-
based estimates tend to be loose near the liquid-air interface, they
can reliably detect if points far away from the free surface are inside
or outside the fluid. Based on this observation, we propose to convert
any given signed distance approximation to an air volume baseline
that guides the formation of the free surface in our transportation
optimization. We start by generating a signed distance function  by
splatting the particles as spheres using [Museth et al. 2013]. We then
construct a narrow band around the zero levelset in  of thickness
� and compute an indicator function � : Ω→ [0, 1] of the form

� (x) =




1 if  (x) ≥ �,

0 if  (x) ≤ −�,(
 (x) + �

2�

)�
otherwise,

(18)

where 
 is a user parameter that controls the sharpness of the ramp
smearing across the narrow band. Note that points outside the
narrow band but inside the fluid are clamped to zero indicating

the absence of air, while points outside the fluid away from the
narrow band are set to one suggesting the presence of air. In our
experiments, we set 
 to one and � to the radius used for building the
signed distance function  . With this indicator function, we assign
the air volume baseline for each cell � in the t-grid to 	 � =� (x� )�� .

Transportation Plan: Our next step is to augment the transporta-
tion optimization in order to account for air volumes while shaping
the free surface similar to the signed distance approximation. To
this end, we include in our objective function an extra regulariza-
tion term that compares the slack air variables with the air volume
baselines by measuring their relative entropy R(� � , 	 � ). Combining
this extended transportation cost with the volume constraints, we
solve for an optimal transportation plan with free surfaces via

min
{�� � ,� � }

∑
�,��� � ‖x� − x� ‖2+�

∑
�,�H(�� � )+�

∑
�R(� � , 	 � )

s.t.

{ ∑
� �� � + � � = �� ∀�,

∑
� �� � = �� ∀�.

(19a)

(19b)

As detailed in the Appendix A, both the transportation plan and
the air volume unknowns can be concisely expressed in terms of
scaling variables for the particles and grid cells, yielding

{
�� � = � ����� � ,

� � = � �	 � .
(20)

Sinkhorn Iterations: By substituting Eq. (20) into Eq. (19b), we can
update the scaling amounts for our free surface optimization using
a simple modification of lines 5 and 8 in Algorithm 1:




� � = ��/
(∑

� �� ��� + 	 �

)
∀�,

�� = ��/
(∑

� �� �� �

)
∀�.

(21)

Note that, despite the additional unknowns to represent the air
volumes, the number of scaling variables are kept the same and our
iterative solver retains its linear convergence.

Surfacing: Equipped with air volumes, we now define the fluid oc-
cupancywithin each cell � of the transportation grid as � � =1−� �/�� .
If necessary, we can aggregate the fluid occupancy over the simu-
lation grid via �� =

∑
� �� � � � . The free surface is then identified as

a smeared interface spanned by every grid cell with a partial fluid
occupancy, similar to interface tracking methods (see, e.g., [Mullen
et al. 2007]). Therefore, we can surface the liquid-air interface into a

Fig. 6. Our method provides reliable and volume-preserving surfacing
through isocontours of the fluid occupancy defined by our regularized
transportation plan. We also compare our isocontour versus the result of
converting particles to VDB tomesh, where we construct VDB from particles
using radii estimated from the prescribed particle volumes.
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mesh by directly contouring the fluid occupancy through an isolevel
between zero and one. Figure 6 shows our surfacing results extracted
by the dual contouring method available in [Museth et al. 2013]
using the levelset of value 1/2. Additionally, Figure 5 compares the
fluid occupancy produced by our solver without the relative entropy
term and varying the sharpness parameter [. Observe that our op-
timization conserves the fluid volume by correcting the baseline
values with smaller [ favoring more smeared fluid-air interfaces.

Obstacle Masks: In addition to free surfaces, we can represent
solid obstacles using a masking attribute discretized by the value
0≤𝑏 𝑗 ≤ 1 for every cell in the t-grid that quantifies the fraction of
cell volume occluded by the obstacles. To incorporate these obstacle
masks in our optimization, we simply update the volume capacity
𝑉𝑗 = (1−𝑏 𝑗 ) |Ω |/𝑛 𝑗 for every grid cell 𝑗 . We can then proceed with
the optimization of the regularized transportation plan described
in Eq. (19). Note that the prescribed volumes for the Lagrangian
particles must also be updated so that

∑
𝑝 𝑉𝑝 ≤

∑
𝑗 𝑉𝑗 , where we use

the inequality to indicate the presence of free surfaces.

Pruning Variables: We can further exploit the discretization of
free surfaces and solid obstacles to speed up our optimization by
culling out the scaling variables for some of the t-grid cells. We first
pin down 𝑠 𝑗 =0 for any cell 𝑗 with 𝑉𝑗 =0, since they are completely
blocked by solid obstacles. We also detect every cell 𝑗 with no
particle contribution (i.e., max𝑝 𝐾𝑝 𝑗 =0), and then overwrite these
cells with the baseline 𝑧 𝑗 =𝑉𝑗 and the scaling 𝑠 𝑗 =1 so that 𝑎 𝑗 =𝑉𝑗
is enforced. As a result, we can compute the Sinkhorn iterations in
Eq. (21) by only traversing the “active” cells that have a non-zero
volume capacity and interact with at least one of the Lagrangian
particles.

Discussion: Once the optimal transportation plan is found, we can
construct power kernels using Eq. (4) and compute transfer weights
with Eq. (9) as previously described with no modification. Note that
the approximation 𝑑x≈𝑉𝑗 used in §5 is now replaced with 𝑑x≈` 𝑗𝑉𝑗 ,
but the derivation steps and the final expressions for our Power
Particle-In-Cell method are exactly the same. Finally, we point out
that our approach for free surface and solid obstacles adds negligible
computational cost to the optimization of transportation plans, in
sharp contrast to the construction of power diagrams with ghost
particles used by de Goes et al. [2015] and the elaborated clipping
scheme against spheres proposed by Lévy [2022].

7 IMPLEMENTATION DETAILS
In this section, we discuss some practical considerations developed
to accelerate the computations of the Power Particle-In-Cell method.
Our implementation of hybrid Lagrangian/Eulerian simulators fol-
lows the variational framework proposed by Batty et al. [2007]. We
make use of Eigen [Guennebaud et al. 2010] as our linear algebra
library, leveraging the sparse matrix-vector multiplication (SpMV)
in our Sinkhorn routine. The AMGCL library [Demidov 2019] is also
used for solving the pressure projection linear system. Lastly, we
employ OpenVDB [Museth et al. 2013] as the sparse data structure
representing both the simulation and transportation grids.

Sparse Data Structure: The Sinkhorn method in Algorithm 1 in-
volves multiple iterations of matrix-vector multiplications that up-
date the scaling unknowns until convergence. Therefore, a perfor-
mant implementation of matrix-vector multiplication is essential.
Since the Gaussian kernels {𝐾𝑝 𝑗 } decay exponentially with the dis-
tance between particles and t-grid cells, most of the kernel values
are close to zero. If not carefully handled, these small entries can
cause numerical blowups due to limited floating-point dynamic
range. One can resolve this numerical instability by implementing
the Sinkhorn iterations in log-domain (see, e.g., [Mandad et al. 2017,
Section 3.3]). However, it is still unaffordable to manage the Gauss-
ian kernels as a dense matrix because of high memory usage and
costly matrix-vector computations. We instead construct {𝐾𝑝 𝑗 } as
a sparse matrix, which accelerates computations via SpMV while
improving numerical stability by avoiding small kernel values. To-
wards this goal, we assemble the Gaussian kernel sparse matrix by
cutting off its coefficients smaller than three standard deviations:

𝐾𝑝 𝑗 =

{
𝜓Y (−∥x𝑝 − x𝑗 ∥2) if ∥x𝑝 − x𝑗 ∥ ≤ 3

√
Y,

0 otherwise.
(22)

With this threshold, we have observed a reduction by an order of
magnitude on both the memory footprint and computational cost of
the Sinkhorn algorithm, thus making our regularized transportation
optimization practical even for large-scale simulations.

Regularization Amount: As pointed out by Cuturi [2013], the
Sinkhorn algorithm converges faster as the regularization amount
Y increases. However, larger values of Y end up creating a denser
matrix for the Gaussian kernel and then the overall performance of
each Sinkhorn iteration worsens due to the slower SpMV computa-
tions. Moreover, increasing Y spreads out and blends the impact of
nearby particles, resulting in a more viscous fluid dynamics. On the
other hand, smaller Y may prune the kernel values too much, making
the influence range of each particle too short to reach any other

Fig. 7. We run Taylor-Vortex and dram break simulations in 2D to study
the effect of different particle-per-cell (PPC) ratios for the transportation
grid (t-grid). We used the Power FLIP method for these examples with a
resolution for the simulation grid (s-grid) fixed at 35 × 35 in the first row
and 50× 50 in the second row. From left to right, the resolution of the t-grid
is set to 35 × 35, 70 × 70, 140 × 140 in the first row, and 50 × 50, 100 × 100,
200 × 200 in the second row, which correspond to PPC ratios of 4, 1, and
0.25, respectively. Observe that decreasing PPC in the t-grid improves the
particle distribution.
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particle. Therefore, we must choose � large enough for multiple
particles to interact and small enough to produce sparse matrices
in order to achieve fast Sinkhorn runtime. In our experiments, we
set � to be proportional to the t-grid resolution using � = 2(Δ�)2,
where Δ� is the width of the t-grid cells. Combined with the cut-off
threshold in Eq. (22), each particle contributes to our sparse matrix
with an average of six t-grid cells for every dimension in a total of
36 cells in 2D and 216 cells in 3D. Additionally, given a desirable
number of particles, we suggest setting the t-grid width Δ� so that
the particle-per-cell ratio (PPC) is between 0.25 and 1. With this
small PPC in the t-grid, multiple grid cells are allocated to discretize
the optimized transportation plans, thus offering a more accurate
approximation of the particle density kernels. Figure 7 compares
the particle distributions produced by our Power FLIP solver using
different PPC ratios for the t-grid. Although our results remain sta-
ble, particles are more uneven as we increase the t-grid PPC. It is
also worth noticing that the PPC for the s-grid is set the same as in
prior hybrid solvers, detached from the t-grid as discussed in §5.

Assembling Pressure Projection: Even though ourmethod can be in-
corporated into fluid simulation frameworks like Batty et al. [2007],
there are still some subtleties we need to take care of. Convention-
ally, particles are used as markers to indicate the existence of fluid
within the Eulerian grid, and a subsequent signed distance function
is constructed from particles to identify the pressure degrees of free-
dom. However, signed distance functions built from particles may
not represent the fluid occupancy accurately, often causing volume
oscillations around the free surface. In contrast, our free surface
handling described in §6 provides precise fluid occupancy values ��
per grid cell � directly derived from our volume-constrained trans-
portation plan. Therefore, we can identify the degrees of freedom
in our pressure projection by simply verifying if the fluid volume in
each s-grid cell � is more than half of its capacity, i.e., �� ≥ 1/2, oth-
erwise we mark the cell as air or solid. These occupancy estimates

Fig. 8. We compare the results of a dam break simulation in 2D using FLIP
(left), FLIP combined with spring forces [Ando et al. 2012] (left-middle), a
modified FLIP with the implicit density projection [Kugelstadt et al. 2019]
(middle-right), and our Power FLIP method (right). The top row shows the
particle view in an early simulation frame versus a particle closeup at a
later frame in the bottom row. Pseudo-colors encode the magnitude of the
particle velocities. Notice that our weighting scheme improves the quality of
the particle distributions, while still preserving the fluid volume as indicated
by the fluid height in the bottom row.

can be further used to extend our solver with second-order accurate
discretizations via the ghost method [Gibou et al. 2002].

8 RESULTS AND DISCUSSION
We provide next a series of benchmark tests in 2D and 3D that
showcase the capabilities of our method. We point the reader to the
accompanying video for complete simulation clips. Table 1 summa-
rizes the simulation configurations and their performances.

Parameters: The setup for our experiments is based on four input
values: the simulation timestep, the particle count, the t-grid particle-
per-cell ratio, and the resolution ratio between s-grid and t-grid.
The cell size Δ� for both the s-grid and the t-grid as well as the
regularization amount � are then derived using these parameters, as
previously detailed in §7. Our tests also used a tolerance of � =0.1
in Algorithm 1 in order to control the volume residual of the t-
grid cells, while enforcing the volume constraints on particles. This
implies that every particle retains the exact amount of volume at
every timestep, but the volume of each individual t-grid cell may
differ from its capacity. Since we use more t-grid cells than particles,
measuring the deviation of cell volumes is more strict than the
particle-based termination criterion used by de Goes et al. [2015].

2D Dam Break: In Figure 8, we visualize the differences between
FLIP, FLIP relaxed with [Ando et al. 2012] , FLIP combined with
[Kugelstadt et al. 2019], and our Power FLIP method for a 2D dam
break simulation. This example used 10� particles, a s-grid reso-
lution of 50 × 50, a t-grid resolution of 200 × 200, and timestep of
Δ� =0.01� . FLIP without any post-process particle relaxations suffers
from significant volume loss and particle clumping (first column).
The method of Ando et al. [2012] favors more uniform particles but
it artificially inflates the fluid volume since only particle clustering
is penalized (second column). By adding the volume correction pro-
posed by Kugelstadt et al. [2019], FLIP is able to restore its volume,
however, uneven particle distribution persists because the particle
displacements can only resolve the volume changes up to the grid
resolution (third column). In contrast, our power weights combined
with FLIP preserve particle volumes over time while maintaining
evenly spaced particle distributions (fourth column).

Non-uniform Sampling: Unlike traditional hybrid fluid solvers
where particles serve purely as markers, our method accounts for

Fig. 9. Our method enables hybrid solvers to handle non-uniform particle
distributions with varying particle-per-cell ratios. Here, we compare 2D
Taylor-Vortex simulations using particles with equal volumes (left) versus
two configurations of spatially varying volumes (middle and right).
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Fig. 10. This example shows a large-scale simulation of a waterfall with 3.5 million particles computed using our Power FLIP method. The first three images
display the particle view at different simulation frames with color-coded velocities. In the last image, we include the surface rendering produced by the
isocontour of our volume-preserving fluid occupancy.

the actual volume occupied by particles. This allows us to initial-
ize particles with different volumes and generate adaptive transfer
kernels through our transportation optimization, thus producing
well-spaced yet non-uniform particle distributions as shown in Fig-
ure 9. We point out that prior correction schemes like [Ando et al.
2012; Kugelstadt et al. 2019] expect nearly constant particle volumes
and, therefore, they cannot handle non-uniform particle distances.
Moreover, the transfer kernel in hybrid methods is predefined using
at least 4 PPC in 2D and 8 PPC in 3D in order to avoid artificial vac-
uum and incorrect dynamics. Instead, our optimized kernels work
robustly even when grid cells are not occupied by any particles.

Energy Preservation: In hybrid methods, energy loss usually hap-
pens during pressure projection and particle-grid transfer. To study
the energy decay of our method compared to prior work, we conduct
a 2D Taylor-Green vortex simulation with 5� particles as shown
in Figure 11. We used a simulation grid with resolution of 25 × 25
for our Power APIC and also for the original APIC method with
linear and quadratic kernels. We also experimented with a ver-
sion of Power APIC using a 100 × 100 simulation grid resolution,
thus matching the transportation grid resolution. Power APIC has
slightly worse energy conservation than APIC with linear kernel,
but better behavior than APIC with quadratic kernel. This is not
surprising since our power kernel is of higher-order and has wider

Fig. 11. This plot compares the kinetic energy preservation over time pro-
duced by Power Particles [de Goes et al. 2015], APIC [Jiang et al. 2015],
and our method (Power APIC) through a 2D Taylor-Green vortex simula-
tion. Under the same simulation resolution, Power APIC shows an energy
decay between APIC with linear kernel and APIC with quadratic kernel.
By increasing the simulation grid resolution, our results lead to energy
conservation similar to the original Power Particles. The energy rate can
be further improved by adding more particles to the fluid simulation, with
our approach requiring only one eighth of the particle count used by APIC
schemes to produce competitive behavior (see close-up).

transfer stencil than the simplistic linear kernel. In fact, transfer
schemes with higher-order kernels have been previously reported
to damp out more energy [Ding et al. 2020]. On the other hand, the
Power Particles method [de Goes et al. 2015] shows a superior capa-
bility of preserving energy. We can improve the energy loss of our
Power APIC scheme to the same level as Power Particles by simply
increasing the simulation grid resolution. We note that APIC with
linear and quadratic kernels can further improve the energy rate
by employing higher resolution grids, but it requires a significant
increase in particle count. In contrast, our Power APIC method can
provide an energy behavior similar to the high-resolution APIC
using a reduced number of particles (10� vs. 80�).

Additional Examples: We performed multiple simulation scenar-
ios in order to evaluate the correctness and effectiveness of our
method. Figure 13 demonstrates that our approach is capable of
handling complex solid boundaries, while yielding results qualita-
tively similar to [de Goes et al. 2015]. To test the stability of our
method, we computed a stress example that initializes fluid particles
by compressing them into a single simulation cell. Our solver is
able to fully restore fluid volume as shown in Figure 3. We also ran
comparisons of our method against FLIP and APIC combined with
[Ando et al. 2012] and [Kugelstadt et al. 2019]. Figures 2 and 12
show the results for two free surface simulations. In both cases, the
work of Kugelstadt et al. [2019] provides improved volume conser-
vation but it is unable to correct the sub-grid non-uniform particle
distributions, which cause the breakage of the fluid thin sheet and
noisy free surfaces. The method of Ando et al. [2012] produces more
relaxed particles at the cost of an inflated fluid volume. Conversely,
our method resolves the particle distributions while preserving the
fluid volume and producing smooth free surfaces. We note that
our comparisons did not insert neither delete particles from the
simulation. Finally, we illustrate in Figure 10 a large-scale waterfall
simulation with 3.5 million particles produced by our technique.

Performance: In addition to reproducing results qualitatively simi-
lar to [de Goes et al. 2015], ourmethod achieves an averaged speedup
factor greater than two compared to the original Power Particles
runtimes, as reported in Table 1. For a more detailed analysis, we
also broke down the timing spent by a single timestep for a 3D
splash simulation of 1M particles (similar to the left column in Fig-
ure 13). In this test, we used the Power FLIP transfer scheme and set
the s-grid to be twice coarser than the t-grid. Our method takes an
average of 6.5 seconds per timestep with 46% of time spent solving
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the Sinkhorn iterations, 29% for pressure projection, 11% for particle-
grid transfer, 7% for particle advection, and 7% for building the air
volume baselines from particles. The implementation of de Goes
et al. [2015] takes instead 21 seconds per timestep, where 51% is
used for constructing the power diagram, 24% for solving pressure,
14% for seeding air particles, and 11% for the weight update. Our per-
formance gain comes mostly from three parts: our method replaces
the power diagram construction with the more efficient Sinkhorn
algorithm, it also makes air particle seeding no longer needed, and
our pressure system is of a smaller size because we can use a coarse
simulation grid decoupled from the particle resolution.

Limitations: Although our method provides better particle distri-
butions and volume preservation than existing hybrid fluid solvers,
these improvements come at an additional computational cost. As
described in Algorithm 2, the Power Particle-In-Cell method intro-
duces two new steps, namely the transportation optimization and
the power weights assembly in lines 1 and 2, respectively. In our
tests with the FLIP-style transfer and the s-grid twice coarser than
the t-grid, these extra routines led to an increase in the total time
spent per timestep of nearly 50%. To mitigate this overhead, we have
considered changing the cut-off threshold in Eq. (22) to two standard
deviations, shrinking the particle stencils to four grid cells per di-
mension. By doing so, the overhead added by our method reduces to
25% of the total cost and then the Eulerian-based pressure projection
becomes the bottleneck. However, these smaller Gaussian stencils
are effectively limiting the influence range for each particle and,
therefore, the resulting simulations trade visual quality by improved
performance. Finally, we note that further speedup can be achieved
by our method through GPU due to the parallel-friendly nature of
our computations.

Fig. 12. In this example, we drop a liquid sphere onto a box using three
variants of the APIC method. Compared with APIC using [Ando et al. 2012]
and [Kugelstadt et al. 2019], our method generates a smooth fluid thin sheet
with evenly spaced particles and volume preservation.

Table 1. This table reports statistics for our experiments, including the
simulation configuration and the averaged time spent per frame. The value
Δ� indicates the simulation timestep, while Δ�� and Δ�� denote the grid
width for the s-grid and t-grid, respectively.We also provide the performance
speedup of our method versus the original Power Particles implementation.
All timings were measured on Intel Core i7-9700 with 8 cores.

Example Δ� Δ�� Δ�� � �� sec/step speedup

Figure 1 0.04 0.005 0.005 5 × 10−5 1.25M 10.2 -

Figure 2 0.01 0.005 0.01 5 × 10−5 1M 8.7 -

Figure 3 0.1 0.08 0.16 1.28 × 10−2 100k 2.4 -

Figure 6 0.01 0.01 0.01 2 × 10−4 463k 5.6 -

Figure 10 0.4 0.3 0.3 1.8 × 10−1 3.5M 27.3 -

Figure 12 0.01 0.01 0.02 2 × 10−4 267k 1.9 -

Figure 13a 0.04 0.08 0.16 1.28 × 10−2 600k 3.2 2.3x

Figure 13b 0.01 0.1 0.2 2 × 10−2 64k 1.2 1.6x

Figure 13c 0.04 0.008 0.008 1.28 × 10−4 616k 6.5 2.5x

Figure 13d 0.04 0.05 0.1 5 × 10−3 100k 1.2 2.6x

9 CONCLUSION AND FUTURE WORK
In this paper, we introduced the Power Particle-In-Cell method as a
new weighting strategy for fluid simulation that provides the high-
quality particle distributions of the Power Particles method com-
bined with the computational efficiency of hybrid Lagrangian/Eu-
lerian solvers. Our power weights can be incorporated into existing
transfer schemes (e.g., PIC, FLIP, APIC) with minor implementation
modifications and at the cost of an iterative Sinkhorn solve in the
beginning of every timestep. The resulting simulations produce
faithful incompressible fluid flows with low energy dissipation and
evenly spaced particles. In particular, we demonstrated through a
series of experiments that our approach is robust to varying particle-
per-cell ratio and supports non-uniform particle distributions free
of any corrective relaxations. In this process, we also developed a
new algorithm to construct Power Particles via the optimization of
regularized transportation plans that handles free surfaces and solid
obstacles faster than [de Goes et al. 2015].
We believe this work opens up different possibilities for future

work. First, we are interested in extending our power weights to
graded Eulerian grids similar to [Gao et al. 2017], which can further
improve the scalability of our method. We are also investigating
adaptive fluid simulations by dynamically updating the particle
volumes and then accounting for these volume changes as part
of our transportation optimization. Combining our scheme with
surface tension is another direction we wish to pursue. Since our
power weights are differentiable, the Power Particle-In-Cell method
is also well-suited to improve the Material Point Method [Jiang et al.
2016] with uniform particle distributions. Finally, our optimization
of fluid occupancy described in Eq. (19) offers a new perspective for
stylizing fluid simulations [Kim et al. 2019, 2020; Sato et al. 2021],
in which guide exemplars can be represented as baseline volumes.
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Fig. 13. We conduct several benchmark simulations to compare the Power Particle-In-Cell method against the original implementation of Power Particles
[de Goes et al. 2015]. Our method provides results qualitatively similar to Power Particles while achieving a significant performance speedup.
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A DERIVATION
In this appendix, we summarize the derivation steps showing that
Eq. (20) is the solution of our regularized transportation problem
given by Eq. (19). We start by writing the Lagrangian function
associated with Eq. (19), which introduces Lagrange multipliers 𝑟
for the particles and transportation grid cells, producing:

L(𝑇, 𝑎, 𝑟 ) = ∑
𝑝,𝑗 𝑇𝑝 𝑗 ∥x𝑝 − x𝑗 ∥2 + Y

∑
𝑝,𝑗 H(𝑇𝑝 𝑗 ) + Y

∑
𝑝,𝑗 R(𝑎 𝑗 , 𝑧 𝑗 )

−∑
𝑗 𝑟 𝑗

(∑
𝑝 𝑇𝑝 𝑗 + 𝑎 𝑗 −𝑉𝑗

)
−∑

𝑝 𝑟𝑝

(∑
𝑗 𝑇𝑝 𝑗 −𝑉𝑝

)
.

One can easily deduce that the partial derivatives of the Lagrangian
function L with respect to (𝑇, 𝑎, 𝑟 ) are:

𝜕𝑇𝑝 𝑗
L = ∥x𝑝 − x𝑗 ∥2 + Y log𝑇𝑝 𝑗 − 𝑟 𝑗 − 𝑟𝑝 ,

𝜕𝑎 𝑗
L = Y

(
log𝑎 𝑗 − log 𝑧 𝑗

)
− 𝑟 𝑗 ,

𝜕𝑟 𝑗L = 𝑉𝑗 − 𝑎 𝑗 −
∑
𝑝 𝑇𝑝 𝑗 ,

𝜕𝑟𝑝L = 𝑉𝑝 −∑
𝑗 𝑇𝑝 𝑗 .

By equating the gradient of the Lagrangian function L to zero, we
obtain the optimality conditions of Eq. (19), which imply that:

𝜕𝑇𝑝 𝑗
L = 0 =⇒ 𝑇𝑝 𝑗 = 𝜓

Y (𝑟 𝑗 + 𝑟𝑝 − ∥x𝑝 − x𝑗 ∥2),
𝜕𝑎 𝑗

L = 0 =⇒ 𝑎 𝑗 = 𝜓
Y (𝑟 𝑗 )𝑧 𝑗 ,

𝜕𝑟 𝑗L = 0 =⇒ 𝑉𝑗 = 𝑎 𝑗 +
∑
𝑝 𝑇𝑝 𝑗 ,

𝜕𝑟𝑝L = 0 =⇒ 𝑉𝑝 =
∑

𝑗 𝑇𝑝 𝑗 .

The two top terms confirm that Eq. (20) provides the solution of Eq.
(19), while the two bottom terms reproduce the volume constraints.

Next, we show that the constrained optimization in Eq. (19) is
equivalent to an unconstrained convex minimization min𝑟 F (𝑟 ),
where F is a dual function in terms of the Lagrange multipliers 𝑟 .
We define this dual function as:

F (𝑟 ) = Y
[∑

𝑝,𝑗 𝜓
Y (𝑟 𝑗 + 𝑟𝑝 )𝐾𝑝 𝑗 +

∑
𝑗 𝜓

Y (𝑟 𝑗 )𝑧 𝑗
]

−
[∑

𝑗 𝑟 𝑗𝑉𝑗 +
∑
𝑝 𝑟𝑝𝑉𝑝

]
.

Note that F is convex with respect to 𝑟 because𝜓Y (𝑟 ) is convex and
the remaining terms are linear in 𝑟 , while the constants (𝐾, 𝑧,𝑉 ) are
non-negative. Since the optimization of F is over any configuration
of Lagrange multipliers 𝑟 , we obtain a unconstrained convex min-
imization over an Euclidean space, which ensures that a solution
exists and is unique. Finally, we confirm that the derivatives of F
reproduce the volume constraints:{
𝜕𝑟 𝑗F =

∑
𝑝 𝜓

Y (𝑟 𝑗 + 𝑟𝑝 )𝐾𝑝 𝑗 +𝜓Y (𝑟 𝑗 )𝑧 𝑗 −𝑉𝑗 =
∑
𝑝 𝑇𝑝 𝑗 + 𝑎 𝑗 −𝑉𝑗 ,

𝜕𝑟𝑝F =
∑

𝑗 𝜓
Y (𝑟 𝑗 + 𝑟𝑝 )𝐾𝑝 𝑗 −𝑉𝑝 =

∑
𝑗 𝑇𝑝 𝑗 −𝑉𝑝 .
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